Boundary behavior of solutions to the parabolic p-Laplace equation II

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

EXISTENCE OF SOLUTIONS TO A PARABOLIC p(x)-LAPLACE EQUATION WITH CONVECTION TERM VIA L∞ ESTIMATES

This article is devoted to the study of the existence of weak solutions to an initial and boundary value problem for a parabolic p(x)-Laplace equation with convection term. Using the De Giorgi iteration technique, the authors establish the critical a priori L∞-estimates and thus prove the existence of weak solutions.

متن کامل

Boundary Behavior of Solutions of Parabolic Equations

A boundary backward Harnack inequality is proved for positive solutions of second order parabolic equations in non-divergence form in a bounded cylinder Q = (0; T) which vanish on @ x Q = @ (0; T) ; where is a bounded Lipschitz domain in R n. This inequality is applied to the proof of the HH older continuity of the quotient of two positive solutions vanishing on a portion of @ x Q: 1. Introduct...

متن کامل

Blow-up of Solutions to a p-Laplace Equation

Consider two perfectly conducting spheres in a homogeneous medium where the current-electric field relation is the power law. Electric field E blows up in the L∞-norm as δ, the distance between the conductors, tends to zero. We give here a concise rigorous justification of the rate of this blow-up in terms of δ. If the current-electric field relation is linear, see similar results obtained earl...

متن کامل

Boundary Behavior of Solutions to Second Order Parabolic Equations

1. Introduction In this paper we study some properties of solutions to second order parabolic equations. We consider both divergence (D) and non-divergence (ND) operators L:

متن کامل

MULTIPLE SOLUTIONS FOR THE p-LAPLACE EQUATION WITH NONLINEAR BOUNDARY CONDITIONS

In this note, we show the existence of at least three nontrivial solutions to the quasilinear elliptic equation −∆pu + |u|p−2u = f(x, u) in a smooth bounded domain Ω of RN with nonlinear boundary conditions |∇u|p−2 ∂u ∂ν = g(x, u) on ∂Ω. The proof is based on variational arguments.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Functional Analysis

سال: 2020

ISSN: 0022-1236

DOI: 10.1016/j.jfa.2020.108515